Phase Equilibria in the AgGaS₂–GeS₂ Systems

by I.D. Olekseyuk, G.P. Gorgut and M.V. Shevtchuk

Department of Inorganic and Physical Chemistry, Volyn State University, Voli av.13, Lutsk 263009, Ukraine

(Received December 4th, 2001; revised manuscript March 26th, 2002)

The AgGaS₂–GeS₂ section has been investigated using the methods of physico-chemical analyses. The existence of α -tetragonal, β -monoclinic solid solutions on the basis of the initial compounds and the intermediate γ -phase, which crystallizes in Fdd2 space group, has been established. The γ -phase forms the eutectics with the initial components. Their coordinates are: 42 mol.% GeS₂ (1121 K) and 93 mol.% GeS₂ (1095 K).

Key words: phase diagram, solid solution, lattice parameters

The investigation of the AgGaS₂–GeS₂ section is a part of systematic studies of the quasiternary system Ag₂S–Ga₂S₃–GeS₂ and the reciprocal system AgGaSe₂ + GeS₂ \Leftrightarrow AgGaS₂ + GeSe₂. The compounds of A^IB^{III}C^{VI}₂ type are perspective materials for quantum electronics [1–4]. The study of the solubility of the D^{IV}C^{VI}₂ compounds in A^IB^{III}C^{VI}₂ draws attention to it for the purpose of increasing of two-ray s-refraction and the increasing of transparency region [5,6].

The data concerning the investigation of the phase equilibria in the $AgGaS_2$ -GeS₂ system can be found in [7], Fig. 1.

Discrepancies caused the necessity to study of the system in the full concentration range again. The purpose of this work was the establishment of the homogeneity ranges of the phases in order to obtain new nonlinear optical materials.

Figure 1. Phase diagram of the quasi-binary section AgGaS₂-GeS₂ [7].

AgGaS₂ crystallizes in space group $I\overline{4}2d$, with the lattice parameters a = 0.05755, c = 1.0298 nm, which agrees well with [8]. The temperature of the congruent melting is 1271 K. Germanium disulfide melts congruently at 1121 K. According to [9], the diffractogram of the compound has been indexed in monoclinic system, space group $P2_1/c$ with the lattice parameters a = 0.6751, b = 1.6796, c = 1.1436 nm, $\beta = 90.8568$.

EXPERIMENTAL

The alloys synthesis, belonging to the AgGaS₂–GeS₂ section, was carried out from the elementary components (Ag – 99.997%, Ga – 99.997%, Ge – 99.9999%) in evacuated to 0.1 Pa quartz ampoules with vibrational mixing. The highest temperature was 1370 K. Alloys on the basis of AgGaS₂ increase their volume during cooling [8], and double containers were used to avoid oxidation. Homogenization of the obtained alloys took place at 720 K during 1000 hours. Further they were quenched in cool water. Samples obtained in this way have been investigated using the methods of differential thermal analysis (DTA), and X-ray phase and microstructural (MSA) analyses. DTA was carried out using VDTA-8M3 thermograph, which was calibrated against the melting points of different metals. Tungsten powder was chosen as a standard. The samples investigated were heated with the rate 5 K/min. Temperature was controlled by thermocouple W–Re0.05/W–Re0.2. X-ray phase analysis was performed using DRON–4–13 diffractometer (CuK_a radiation).

For the definition of the reflection intensities and angles, the shooting took place in step mode, scanning step $2\Theta = 0.02^{\circ}$ with the exposition time in every point 10 seconds. Results of X-ray analysis have been worked up by the PD Win program complex. MSA has been carried out using microscope MMU-3.

RESULTS AND DISCUSSION

DTA results are presented in Table 1. As one can see, the initial compounds AgGaS₂ and GeS₂ melt congruently at 1271 K and 1121 K, respectively, which agrees well with literature. The character of solidus curves changes in the ranges of 0–30 mol.% GeS₂ and 98–100 mol.% GeS₂ testifies the crystallization of the solid solutions on the basis of the initial compounds. Results of X-ray analysis are presented in Fig. 2. The solid solution on the basis of AgGaS₂ extends to about 30 mol.% GeS₂. The lattice parameters change from a = 0.57559(1), c = 1.02998(3) nm for AgGaS₂ to a = 0.57166(3), c = 0.99695(6) nm for limiting composition of the solid solution.

No	Phase composition, mol.%		Temperature of thermal effects on the DTA, K		
	$AgGaS_2$	GeS ₂	T – liquidus	T – solidus	
1	100	_	1271	_	
2	95	5	1267	1250	
3	90	10	1253	1225	
4	85	15	1238	1198	

Table 1. DTA	results of the	alloys of the	e quasi-binary	section A	AgGaS ₂ –C	$3eS_2$.
--------------	----------------	---------------	----------------	-----------	-----------------------	-----------

	917			
Table 1 (continu	ation)			
5	80	20	1225	1173
6	75	25	1203	1152
7	70	30	1185	1130
8	65	35	1165	1121
9	60	40	1137	1121
10	55	45	1128	1121
11	52	48	1130	1120
12	50	50	1133	1125
13	48	52	1136	-
14	45	55	1135	1125
15	42	58	1134	1045
16	40	60	1133	1095
17	35	65	1129	1096
18	30	70	1128	1103
19	25	75	1125	1097
20	20	80	1119	1092
21	15	85	1113	1094
22	12	88	1109	1095
23	10	90	1106	1088
24	8	92	1102	1095
25	5	95	1105	1093
26	2	98	1112	_
27	-	100	1121	

The extent of the solid solutions on the basis of GeS₂ does not exceed 2 mol.% AgGaS₂. They crystallize in the monoclinic system, space group $P2_1/c$. In the concentration range of 48–55 mol.% GeS₂ (for T = 720 K) the γ -phase of variable composition $(Ag_xGa_xGe_{1-x}S_2)$ exists. The diffractogram of the alloy with composition AgGaGeS₄ indexes in rhombic system, space group Fdd2 [10] with the lattice parameters a = 1.20152(2), b = 2.2904(1), c = 0.68742(4) nm. Within the homogeneity range of the γ -phase the lattice parameters change from a = 1.2028(3), b = 2.2950(1),c = 0.6879(1) for x = 0.52 to a = 1.20023(3), b = 2.28817(7), c = 0.68730(2) for the composition with x = 0.45. Results of MSA are in good agreement with the results obtained by the X-ray analysis.

On the basis of the obtained results the phase diagram of the AgGaS₂–GeS₂ system have been constructed (Fig. 3). Liquidus of the system contains three branches of primary phase crystallization: α -solid solutions on the basis of AgGaS₂ (0-42 mol.% GeS₂), intermediate γ -phase (42–93 mol.% GeS₂) and β -solid solutions on the basis of GeS₂ (93–100 mol.% GeS₂). The intermediate rhombic phase forms the eutectics with the initial components. Their coordinates are: $e_1 - 42 \text{ mol.}\% \text{ GeS}_2$, 1121 K and e_2

Figure 2. Plots of lattice parameters and unit cell volumes of the solid solutions in the quasi-binary section AgGaS₂–GeS₂ (at 720 K).

-93 mol.% GeS₂, 1095 K. So, the investigations that have been carried out, showed that the phase diagram which was constructed in [7], differs essentially from that in the present work. One can assume, that in [7] the alloys were not equilibrated before the physico-chemical investigations, leading to a false phase diagram.

Figure 3. Phase diagram of the quasi-binary section $AgGaS_2$ - GeS_2 : 1 – L, 2 – L + α , 3 – L + γ , 4 – L + β , 5 – α , 6 – α + γ , 7 – γ , 8 – γ + β , 9 – β .

REFERENCES

- 1. Hobden M.V., Nature, 216, 678 (1967).
- Guseinov D.T., Gasanov N.E., Kyazym-Zade A.G. and Nani R.H., Phys. Tekhn. Polypr., 15, 1811 (1981).
- 3. Badikov V.V., Matveev I.N. and Pshenichnikov S.M., Kristallography, 26, 537 (1981).
- 4. Robbins M. and Lambrecht V.G., Mater. Res. Bull., 8, 703 (1973).
- 5. Hydhes O.H., Wooley J.C., Lopez-Rivere S.A. and Pamplin B.R., Solid State Commun., 35, 573 (1980).
- 6. Pamplin B.R., Ohachi T. and Maeda S., Inst. Phys. Conf. Ser., 35, 35 (1977).
- 7. Badikov V.V., Tyulyupa A.G., Shevyrdyaeva G.S. and Sheina S.G., Inorganic Matter., 27, 248 (1991).
- 8. Abrahams S.C. and Bernstein J.L., J. Chem. Phys., 59, 1625 (1973).
- 9. Blezkan D.I., Mitrovickiy I.M. and Stefanovich V.A., Kristallography, 32, 385 (1987).
- 10. Pobedimskaya E.A., Alimova L.L. and Belov N.V., Dep. in VINITI, Nº 6319 (1982).